A Note on the Refined Strichartz Estimates and Maximal Extension Operator

نویسندگان

چکیده

There are two parts for this paper. In the first part, we extend some results in a recent paper by Du, Guth, Li and Zhang to more general class of phase functions. The main methods Bourgain-Demeter's $l^2$ decoupling theorem induction on scales. second prove positive maximal extension operator hypersurfaces with principal curvatures. sharp $L^2$ estimates Du Zhang, bilinear method Wolff Tao.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on the Kakeya Maximal Operator

In this paper we obtain an upper bound for the L2 norm for maximal operators associated to arbitrary finite sets of directions in R 2.

متن کامل

A note on superspecial and maximal curves

In this note we review a simple criterion, due to Ekedahl, for superspecial curves defined over finite fields.Using this we generalize and give some simple proofs for some well-known superspecial curves.

متن کامل

A Note on Weighted Estimates for the Schrödinger Operator

We study two problems closely related to each other. The first one is concerned with some smoothing weighted estimates with weights in a certain MorreyCampanato spaces, for the solution of the free Schrödinger equation. The second one is a weighed trace inequality.

متن کامل

A Note on Localised Weighted Inequalities for the Extension Operator

We prove optimal radially weighted L2-norm inequalities for the Fourier extension operator associated to the unit sphere in Rn . Such inequalities valid at all scales are well understood. The purpose of this short paper is to establish certain more delicate single-scale versions of these. 2000 Mathematics subject classification: 42B10.

متن کامل

A note on maximal non-prime ideals

The rings considered in this article are commutative with identity $1neq 0$. By a proper ideal of a ring $R$,  we mean an ideal $I$ of $R$ such that $Ineq R$.  We say that a proper ideal $I$ of a ring $R$ is a  maximal non-prime ideal if $I$ is not a prime ideal of $R$ but any proper ideal $A$ of $R$ with $ Isubseteq A$ and $Ineq A$ is a prime ideal. That is, among all the proper ideals of $R$,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Fourier Analysis and Applications

سال: 2021

ISSN: ['1531-5851', '1069-5869']

DOI: https://doi.org/10.1007/s00041-021-09849-8